The Cambridge Report on

Database Research

October 19-20, 2023

= = w
~ 1 ZT W
< DOz
HTN o

oW
UD.SSOKA|F_
> ,DEILYV,V

HTTPS://ARXIV.ORG/ABS/2504.11259V1 15 APR 2025

https://arxiv.org/abs/2504.11259v1

Previous Reports

Seattle Report on Database Research. SIGMOD Rec. 48, 4 (Feb. 2020)

The Beckman report on database research. Commun. ACM 59, 2 (Jan. 2016)
The Claremont report on database research. SIGMOD Rec. 37, 3 (Sept. 2008)
The Lowell database research self-assessment. Commun. ACM 48, 5 (May 2005)
The Asilomar report on database research. SIGMOD Rec. 27, 4 (Dec. 1998)

Avi Silberschatz and Stan Zdonik. 1996. Strategic directions in database systems—breaking out of the
box. ACM Comput. Surv. 28, 4 (Dec. 1996)

Avi Silberschatz,Mike Stonebraker, and Jeff Ullman. 1996. Database research: achievements and
opportunities into the 21st century. SIGMOD Rec. 25, 1 (March 1996)

Avi Silberschatz, Michael Stonebraker, and Jeffrey D. Ullman. 1990. Database systems: achievements
and opportunities. SIGMOD Rec. 19, 4 (Dec. 1990)

Future Directions in DBMS Research - The Laguna Beach Participants. SIGMOD Rec. 18, 1 (1989)

Positioning of the report

is not intended as an exhaustive survey of all
technical challenges or industry innovations in
the field

reflects the perspectives of senior community
members on the most pressing challenges and
promising opportunities ahead

Evolution Over The Past Five Years

Important advances in the database and data Rise of Large Language Models (LLMs)

systems landscape for past five years > LLMs are still evolving and have yet to reach
° new hardware their full potential
> cloud-based data systems o offer a promising solution to many complex data

challenges involving natural language and

o continued adoption of statistical techniques, ML,
P d unstructured data

and Al in both core data systems architecture
and components > unlocked new possibilities for understanding

human intentions and needs

o paving the way for more intuitive, natural
language-based querying and analysis interfaces

o comprehend data, including video and text, and
to ground structured data in broader general
knowledge

o synthesize complex, multi-step data
transformation programs

Outline

Core Data Systems Responsible Data Management and Data
> Database Systems Governhance

> Cloud Data Systems

> New Hardware
Collaboration, Integration, and Human-Centric

Data Issues
o Data Sharing and Collaboration

o Learned Components, Autotuning, and
Opportunities for ML-in-databases

o Data Integration

Generative Al / Large Language Models ° Human-Centered Systems
o LLMs for Database Systems > Data Science and Data-Intensive Science

o Data Systems for LLMs

Database Systems |

Open-source database engines with roots in
research continue to see increased adoption
and commercialization

> PostgreSQL continues to be a popular choice for
both on-premises and cloud deployments

o Apache Spark and Apache Flink as scalable data
processing systems

° DuckDB - an embeddable analytical database
engine
o efficient query processing in local environments

° increasingly popular in contexts where database engines
were previously absent, including data science workflows
and graphical user interfaces

Composable building blocks

o [Meta] Velox, Apache Arrow DataFusion, Apache
Calcite

° reusable, high-performance components for
data processing that can be easily integrated into
different systems

o standardizing interfaces for common database
operations and components

Bridging traditional data management and the
needs of data scientists

> Dask, Modin, Polars [https://pola.rs/], Spark

o DBMS-style semantics and optimization have
been brought to bear on data science workloads

DuckDB Applications

Mark Raasveldt and Hannes Muhleisen. 2019. Analytical Workflows
SD|LéChI>|%B|): ?1n9ERqul\e/|d(lj\la bIeYAnl?lY\}\llcadSD:ta base. > Lightweight Text Analytics Workflows with DuckDB
) g » NEW YOrK, , : o https://duckdb.org/2025/06/13/text-analytics
https://doi.org/10.1145/3299869.3320212) Makchilne Learning Prototyping with DuckDB and
scikit-learn

Atwal, R.J., Boncz, P.A., Boyd, R., Courtney, A.,

Dbhmen, T., Gerlinghoff, F., Huang, J_’ Hwang, J_’ o https://duckdb.org/2025/05/16/scikit-learn-duckdb

Hyde, R., Felder, E. and Lacouture, J., 2024. > Data Science ETL Pipelines with DuckDB
MotherDuck: DuckDB in the cloud and in the o https://www.kdnuggets.com/data-science-etl-pipelines-with-
client. In CIDR. duckdb

GUIs

o MEET THE NEW DUCKDB LOCAL Ul: ANALYZE DATA
VISUALLY, RIGHT WHERE IT LIVES

o https://motherduck.com/blog/local-duckdb-ui-visual-data-
analysis/

o Get a GUI for your Iceberg lakehouse with DuckDB
Ul from Motherduck

o https://tower.dev/blog/get-a-gui-for-your-iceberg-lakehouse-
with-duckdb-ui-from-motherduck

https://doi.org/10.1145/3299869.3320212
https://motherduck.com/blog/local-duckdb-ui-visual-data-analysis/
https://motherduck.com/blog/local-duckdb-ui-visual-data-analysis/

References

Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong, Laith Sakka, Krishna Pai, Wei He,
and Biswapesh Chattopadhyay. 2022. Velox: meta's unified execution engine. Proc. VLDB Endow.
15, 12 (August 2022), 3372-3384. https://doi.org/10.14778/3554821.3554829

Andrew Lamb, Yijie Shen, Daniél Heres, Jayjeet Chakraborty, Mehmet Ozan Kabak, Liang-Chi
Hsieh, and Chao Sun. 2024. Apache Arrow DataFusion: A Fast, Embeddable, Modular Analytic
Query Engine. In Companion of the 2024 International Conference on Management of Data
(SIGMOD '24). Association for Computing Machinery, New York, NY, USA, 5-17.
https://doi.org/10.1145/3626246.3653368

Edmon Begoli, Jesus Camacho-Rodriguez, Julian Hyde, Michael J. Mior, and Daniel Lemire. 2018.
Apache Calcite: A Foundational Framework for Optimized Query Processing Over Heterogeneous
Data Sources. In Proceedings of the 2018 International Conference on Management of Data
(SIGMOD '18). Association for Computing Machinery, New York, NY, USA, 221-230.
https://doi.org/10.1145/3183713.3190662

https://doi.org/10.14778/3554821.3554829
https://doi.org/10.1145/3626246.3653368

References

Amandeep Khurana and Julien Le Dem. 2018. The Modern Data Architecture: The Deconstructed

Database. login Usenix Mag. 43, 4 (2018). https://www.usenix.org/publications/login/winter-
2018-vol-43-no-4/khurana

Pedro Pedreira, Orri Erling, Konstantinos Karanasos, Scott Schneider, Wes McKinney,
Satyanarayana R. Valluri, Mohamed Zait, and Jacques Nadeau. 2023. The Composable Data
Management System Manifesto. Proc. VLDB Endow. 16, 10 (2023), 2679—-2685.
https://doi.org/10.14778/3603581.3603604

https://www.usenix.org/publications/login/winter-2018-vol-43-no-4/khurana

DataFusion: Modular

Analytic Query Engine

Embeddable and extensible query engine
written in Rust that

o uses Apache Arrow as its memory model (cache-
efficient columnar layouts)

Extension points
Scalar, Aggregate, and Window Functions

Catalog

Data Sources

Execution Environment

Query / Language Frontends
Query Rewrites / Optimizer Passes
Relational Operators

[¢]
[¢]
[¢]
[¢]
[¢]
[¢]

o

“DataFusion and DuckDB exhibit similar
scaling behavior, and thus we conclude
DataFusion’s modular design and pull based
scheduler do not preclude state of the art
multi-core performance”

i Catalo icati i
gom"?"" g Multiple SQL | | Data Flow Application Logic
Ll Dialect Analysis
Language custom S ! File System Interface
Operators Y
":J,APACHE "BAPACHE "BAPACHE
DATAFUSION DATAFUSION" DATAFUSION
Specialized Database Analysis Engine Analytic Application

Figure 1: When building with DataFusion, system designers implement domain-specific features via extension APIs (blue),
rather than re-implementing standard OLAP query engine technology (green).

Catalog and Expression Eval
Data Sources P
Parquet | Fxonsion o " Extonson Nado | HashAggregate
‘ csv ‘ I LogicalPlan l ExecutionPlan _)
___________________ Join
| Extension ;
o } w w
[BExtension | , Sort
| Frontend Optimizations / Optimizations/ —
Transformations Transformations | ;
sa | Gosen
| Extension | | Extension \
‘ DataFrame ‘ | LogicalPlan Rewrite | | ExecutionPlan Rewrite Streams
Front Ends Plan Representations and Rewrites Execution Engine

Figure 2: Architecture (Section 5). DataFusion’s standard query engine subsystems (green) run queries "out of the box". Systems
built on top of DataFusion customize behavior using extension APIs (blue).

Velox: Meta’s Unified Execution Engine

The available data types, functions, and aggregates
vary across these systems, and their behavior can be
vastly inconsistent across engines

o 12 different implementations of the substr with different

Earameter semantics (0- vs. 1-based indices), null
andling, and exception behavior

I_llcoelox: an open source C++ database acceleration
ibrary

° Provides reusable, extensible, high-performance, and

dialect-agnostic data processing components for building

execution engines, and enhancing data management
systems

> Does not provide a language frontend; instead, expects a
fully optimized query plan as input and executes it locally

using the resources available in the local host

> Does not provide a global query optimizer, but at
execution time leverages adaptivity techniques, such as
filter and conjunct reordering, dynamic filter pushdown,
and adaptive column prefetching

Use cases: Presto, Spark, XStream, Scribe, FBETL,
TorchArrow, F3,

o

[e]

Highlevel components

Type: a generic type system including scalar, complex,
structs, maps, arrays, tensors, ...

Vector: an Arrow-compatible2 columnar memory layout
module, supporting multiple encodings

Expression Eval: a fully vectorized expression evaluation
engine

Functions: APIs to build custom functions; simple (row-by-
row) and vectorized (batch-by-batch) interface for scalar
functions; for aggregate functions

Operators: implementation of common data processing
operators - TableScan, Project, Filter, Aggregation,
Exchange/Merge, OrderBy, HashJoin, Mergeloin, Unnest

1/0: a generic connector interface pluggable file format
encoders/decoders and storage adapters

o ORC, Parquet, S3, HDFS

Serializers: a serialization interface targeting network
communication

Resource Management: a collection of primitives for
handling computational resources, such as memory arenas
and buffer management, tasks, drivers, and thread pools
for CPU and thread execution, spilling, and caching

References

Dugré, M., Hayot-Sasson, V., & Glatard, T. (2023). Performance comparison of Dask and Apache
Spark on HPC systems for neuroimaging. Concurrency and Computation: Practice and
Experience, 35(21), e7635.

Devin Petersohn, Dixin Tang, Rehan Durrani, Areg Melik-Adamyan, Joseph E. Gonzalez, Anthony
D. Joseph, and Aditya G. Parameswaran. Flexible Rule-Based Decomposition and Metadata
Independence in Modin: A Parallel Dataframe System. PVLDB, 15(3): 739-751, 2022.

Modin: A Parallel Dataframe System

Dataframe systems (ex. pandas) are used by
data scientists for data transformation,
validation, cleaning, and exploration

Dataframe systems like are non-interactive on
moderate-to-large datasets, and break down
completely when operating on datasets
beyond main memory

MODIN: ensuring scalability of dataframe
operators, while also providing clear,
consistent, and correct semantics to users

lozs 1024
51z 51z

s T

128 =
e - Do

DG 1‘1_““-! 20 :h-h"'-'-.l.'l'-'"-‘#x | sz E\x
= H-&h‘“"-‘_ e —_—
C] Mod:l:“““ﬁ""-.___““t } e Modin h"""-ﬁ.\

B s pandas \"-t""—-ﬂ & [== pandas ———s

. """‘"'--.."""'"--.._3 2w Fpalas

2 =mfes Tigsk DF

! & 8 1& 3z -4 125

MNumber of +wCPUs

Formal basis: decomposition rules that allow
us to

o rewrite operations on the original dataframe
into analogous operations on vertical, horizontal,
or block-based partitions of the dataframe

> while being able to concatenate the outputs to
reproduce the results on the original operations

Metadata independence

o metadata is captured at a logical level, with the
physical representation of the metadata being
decoupled from the logical

o Independent type system for dataframes that
natively supports mixed and unspecified types in
a column, whereby we can defer type inference
to only when it is needed

! & & 1la 3z (-9 123
Mumber of +CFUs
(d) join 13

Database Systems ||

Federation Gu, Z., Corcoglioniti, F., Lanti, D., Mosca, A.,
Xiao, G., Xiong, J., & Calvanese, D. (2024). A
Pulling data from diverse sources to answer systematic overview of data federation
complex queries systems. Semantic Web, 15(1), 107-165.
New challenges around automated Pushdown analysis. IBM Db2 Big SQL 7.1.0
infrastructure management and performance Documentation.
optimization https://www.ibm.com/docs/en/db2-big-
o techniques to push down query predicates to sal/7.1.0?topic=processing-pushdown-analysis
remote data sources can help to enhance _
performance by reducing data movement :Br]t"gduc'flgn to fed?[r?cFEd queries. Google
R , : Lo igQuery Documentation.
gg&fﬁ:&ﬁg’[gt\ﬁﬂ f‘,gdefsagﬁt'igf‘iﬁrf;‘ﬁfﬁr;” such https://docs.cloud.google.com/bigquery/docs/
consistency and reliability federated-queries-intro

o data residency laws require data not to leave
specific jurisdictions, such as the EU

https://www.ibm.com/docs/en/db2-big-sql/7.1.0?topic=processing-pushdown-analysis
https://docs.cloud.google.com/bigquery/docs/federated-queries-intro

Cloud Data Systems

Cloud-native architectures have matured significantly Research directions

Traditional relational DBMSs, NoSQL, distributed SQL
offerings

Database virtualization - a single database frontend
automatically provisions and routes queries to the best

The industry has widely adopted the concept of infrastructure

disaggregated storage and compute, enabling a high

. L Declarative infrastructure as a service
degree of scalability and flexibility f

° interfaces are used for specifying more than queries but

Significant trend: shared storage, where any also the infrastructure upon which systems run

processing node can access any data element with a ° search and optimization systems attempt to allocate
soft allocation of nodes to data partitions infrastructure in the most cost-effective way

* independent scaling of compute and storage Collecting high-quality data to benchmark cloud

> separation of concerns between the data processing and systems and train machine learning models that will
durable Storag‘? layers _ . _ power adaptive and learned features of systems
JAmazon Redshift, Google BigQuery, Databricks, Microsoft > anonymized or aggregated workloads from operational

> synthetic benchmarks that accurately mirror real-world
use cases (LLM to be applied?)

New Hardware

Hardware continues to evolve rapidly to cater to Research Directions
resource-hungry Al

Database community has made strides in leveraging dgveloping abstractions to leverage
improved hardware capabilities diverse accelerators

> NVMe SSD
> new storage engines that can fully utilize their high IOPS and low latency deSigning new data-centric accelerators

o Persistent memory (e.g. Intel Optane DIMMs) o o
° novel index structures that provide crash consistency without the overhead exp|0|t|ng para”ellsm in GPUs fOI’

of traditional write-ahead logging database operations
o CXL (Compute Express Link)
° memory expansion and sharing techniques across servers processing near memory (e.g.’ in Smart-
" GPU . . . - , NICs or DPUs) ?
° massively parallel query processing, particularly for hash joins and sorting
> Tensor PU

o Data PU, Smart Network Interface Card (NIC)
o Specialized Al accelerators: FPGA, ASIC

o data decompression and filtering

References

Cheng Li, Hao Chen, Chaoyi Ruan, Xiaosong Ma, and Yinlong Xu. 2021. Leveraging NVMe SSDs for
Building a Fast, Cost-effective, LSM-tree-based KV Store. ACM Trans. Storage 17, 4, Article 27
(November 2021), 29 pages. https://doi.org/10.1145/3480963

Lavinsky, B., & Zhang, X. (2022, July). PM-Rtree: A highly-efficient crash-consistent R-tree for
persistent memory. In Proceedings of the 34th International Conference on Scientific and Statistical
Database Management (pp. 1-11).

Marcel Weisgut, Daniel Ritter, Pinar Tozlin, Lawrence Benson, and Tilmann Rabl. 2025. CXL Memory
Performance for In-Memory Data Processing. Proc. VLDB Endow. 18, 9 (May 2025), 3119-3133.
https://doi.org/10.14778/3746405.3746432

Tobias Maltenberger, Ilin Tolovski, and Tilmann Rabl. 2025. Efficiently Joining Large Relations on
Multi-GPU Systems. Proc. VLDB Endow. 18, 11 (July 2025), 4653-4667.
https://doi.org/10.14778/3749646.3749720

Xuan Sun, Chun Jason Xue, Jinghuan Yu, Tei-Wei Kuo, and Xue Liu. 2021. Accelerating data filtering for
database using FPGA. J. Syst. Archit. 114, C (Mar 2021). https://doi.org/10.1016/j.sysarc.2020.101908

https://doi.org/10.1145/3480963
https://doi.org/10.14778/3746405.3746432
https://doi.org/10.14778/3749646.3749720

References

Hu, J., Bernstein, P. A,, Li, J., & Zhang, Q. (2024). DPDPU: data processing with dpus. arXiv
preprint arXiv:2407.13658. CIDR 2025.

Tibbetts, N., Ibtisum, S., & Puri, S. (2025). A Survey on Heterogeneous Computing Using
SmartNICs and Emerging Data Processing Units. Future Generation Computer Systems, 108207.

SpanDB (2021)

LSM-tree-based KV store that adapts RocksDB to utilize

NVMe SSD @Async request processing
The bulk of data are hosted on on cheaper and larger DRAM
SSDs (256 GB, $1800) @
Immutable MTs Mutable MT

Write-ahead logs (WAL) and top levels of the LSM-tree
are relocated to a much smaller and faster NVMe SSD File system SpanDB TopFS

OS page cache SPDK cache

High-speed, parallel WAL writes

TopFS - a file system to enable live data migration tRead t Compaction t I,F'“S“ 'Read S
[\ [kL

between fast and slow disks cD
. (250GB)
Evaluation / L, \{2_51-5) (250MB) L, WAL
> SpanDB simultaneously improves RocksDB's throughput by (2.5GB) area
up to 8.8x and reduces its latency by 9-58% / \ (25GB) L,
o Compared with KVell, a system designed for high-end Bottom LSM-tree levels Top LSM-tree levels
SSDs, SpanDB achieves 96—140% of its throughput, with a) i
2.3-21.6 lower latency, at a cheaper storage configuration SATA SSD RAID (960GB, $248)x5 Optane SSD, 375GB, $1221

Persistent Merged R-tree

High-efficient insert, delete, and search Reduces the latency of insertion by up to
operations for high-dimensional datasets using 77.6% and 80% for the uniform and zipfian
persistent memory datasets respectively compared to the state-

. oftheart persistent R-trees while maintaining
Partitioned data structure crash consistency

o non-leaf nodes are stored in DRAM

o leaf nodes are stored in persistent memory Reduces the search time by 19.2% compared

to FBR-tree

Interleaved mapping approach Achieves better scalability for both insertion

° maps contiguous data blqck_s in persistent and search up to 32 threads
memory to interleaved bits in bitmap groups in

different cache lines to reduce cache line
reflushes

Supports lock-free insertion using persistent
multi-word compare and swap operations to
eliminate locking overhead

CXL Memory Performance for
In-Memory Data Processing

Database operation performance with data CXL for Sequential Accesses: data structures that
interleaved across multiple CXL memory devices are primarily read randomly (hash tables) or
> Composable Memory Appliance (CMA) Blade frequently written should be placed in CPU
prototypes - FPGA-based memory expansion solution memory, while sequentially accessed data
B Memory BE Memory Cantroller 7 (frequently scanned columns) can be placed in CXL
: memory
Tvpe 3 Devices
CPU Cores & Caches -
. : : . :
5 Ty - Attachmg. multiple CXL memory expansion dE\{ICES
z : : = .= to a CPU increases the overall memory bandwidth
A & El| ¢ CXL.mem| | ¢ CXL.mem
-~ . .
<||[pcre PHY PCle PHY CXL Memory Expansion devices can be cheaper
[— é | than using only CPU memory
_ !.nter—socket CPU 1 @, Scagate CMA Blades - iﬁg : EEEESEEEEE CPU Memory
interconnect (UPI) g §:®E == : I
_ — B g0 807 | CPU Memory +
o Inter-die — D%% 2 -E 60 3 I mRmn ~7 1 CXL Device
interconnect > 10 . v E‘S 0 1
. O Ty] f 1 e o, CPU Memory +
1e — o U 20 — e 1 to 4 CXL Devices
[D 2 E%E :‘*a e s ER R
0+ T
;Mcﬂmm Controller % E%% FARER R P SRR ARAP A SRR
DIMM % Memory capacity demand [TiB]
-

¥ EPELAY :
{= Channel R
Memory per CPU: Memory per CMA blade: Figure 14: Cheapest CPU and memory configurations with 2 1
8 x 32 GiB DDRS5 (4800 MT/s) 8 x 128 GiB DDR4 (1866 MT/s) and without CXL memory devices.

Efficiently Joining Large
Relations on Multi-GPU
Systems

Few existing multi-GPU algorithms either

o fail to exploit the high-speed P2P interconnects
between the GPUs or

> to handle large out-of-core data atively

Heterogeneous multi-GPU sort-merge join for
large out-of-core data exceeding the combined
GPU memory capacity

° a multi-GPU-accelerated merge- or radix
partitioning-based sort phase

° a parallel CPU-based multiway merge phase

° a hybrid join phase that combines a CPU merge
path partition with a multi-GPU-accelerated join
strategy

-
i

Join duration [s]
=]

<

l

—=— Rui SMJ (2 GPUs)

012345678910
10 |R| = |S| [1e9]

(a) Workload A

Rui HEJ (4 GPUs)

HMG SMJ (2 GPUs)

.
<

(75
=
L

—
(=]
1

Join duration [s]
(%]
[=]

<

IR| = 5] [1e9]

(b) Workload B

Figure 11: Baseline comparison on the IBM AC922

Join duration [s]
[e
.3 .3

[y
[=J=]

Figure 12: Baseline comparison on the NVIDIA DGX H100

e

—— Balkesen SM] (CPU) —=— Rui SM] (4 GPUs)

—v— RBalkesen RH] (CPU)

'y
LT

=

N

P e
S
G

0 4 8 121620242832 3640
10 # |R| = |S| [1e9]

(a) Workload A

HMG SM] (8 GPUs)

Rui HRJ (8 GPUS)

200

Join duration [s]
_—
20 b2 =)
= =2 =

Y
=

=

Join duration [s]
= = ba B3
AATATA

Join duration [s]
[s*]
=

//{'""’/
57 T
=
0 1 2 3 4 5
IR = || [1e9]

(a) IBM AC922

(b) NVIDIA DGX H100

Fisure 15: Scalability for increasing numbers of GPUs

WA
e TR

=
.5

0246 8101214161820
IR| = |S| [1e9]

(b) Workload B

02 46 8101214161820
IR] = IS [1e9]

Data Processing
with DPUs

DBMSs, KV Services, ...

=

Challenges in the cloud

Compute inefficiency

° CPU speed has been increasing rather slowly over
the past decade

> data systems frequently invoke compute-heavy
subroutines: compress and encrypt

° can data systems still rely on CPUs to sustain good
performance on these compute tasks?

I/0 cost: high-bandwidth 1/0 is among the most
common tasks in database systems

> the number of CPU cycles increases linearly with
|/O throughput

Disaggregation overhead

o better flexibility in resource management at the
expense of additional network 1/O for storage
accesses leading to higher access latency and even
more CPU consumption

Host
Host CPUs
Mem
| N N

DDS DPU Host
component resource resource

Remote
Clients/ - o
Servers

Figure 5: DPDPU components—Compute, Network, and Stor-
age Engines (CE, NE, and SE)—and resources they access.

Compute Engine offers efficient and versatile
computational power for data processing tasks
orchestrated across DPU, host CPUs, GPUs,
FPGASs, connected via PCle

Network Engine handles network 1/0 utilizing
the advanced networking facilities built in DPUs
(high-speed interfaces, match-action offloading,
and user libraries)

_Storadg_e Engine improves storage path efficiency,
including requests from both local applications
and those from remote clients

Learned Components, Autotuning,

and ML-in-databases

Machine learning for DBMS internals

° Query optimization: cost models based on
learning over data and workloads for complex,
multi-join queries

o Cardinality estimation: deep neural networks
and statistical models capture high-dimensional
correlations in data distributions

o Reinforcement learning techniques are deployed
to dynamically adjust physical data organization
based on observed query workloads, with
predictive I/O techniques demonstrating the
potential to outperform traditional indexing
methods

> Cloud resource management: ML models for
serverless VM management have shown
significant reductions in cold start times and
resource costs

References

Bolin Ding, Rong Zhu, and Jingren Zhou. 2024.
Learned Query Optimizers. Found. Trends
databases 13, 4 (Sep 2024), 250-310.
https://doi.org/10.1561/1900000082

Yang, Z. (2022). Machine learning for query
optimization (Doctoral dissertation, University
of California, Berkeley).

Bodra, D., & Khairnar, S. (2025). Machine
learning-based cloud resource allocation
algorithms: a comprehensive comparative
review. Frontiers in Computer Science, 7,

1678976.

Generative Al / Large Language Models

Enabling more intuitive human interfaces for Handling the high cost of inference at scale
complex database systems - efficient computational stacks by combining data
° auto-generating queries partitioning, caching, embedding indexes
> optimizing queries for performance o databases and provenance tools play a crucial
> Song, M., & Zheng, M. (2024). A Survey of Query role n Val!datmg outputs to reduce
Optimization in Large Language Models. arXiv preprint hallucinations
arXiv:2412.17558.
o suggesting schema designs based on workload Moving beyond basic RAG methods by
patterns and business requirements developing smarter, context-aware retrieval

_ _ systems
Unclear whether LLMs are the right solution

for many classic DBMS problems

° it seems unlikely that it will make sense to use
LLM to solve query optimization problems

o APls between data systems components will
ever be replaced by “agents” interacting via
natural language

LLMs for Database Systems

Text-to-SQL System design tasks

o Spider Text-To-SQL Challenge [https://yale- > composing database engines
lily.github.io/spider], ChatGPT 4 — rank 1-7

o designing data pipelines

Tasks beyond Text-to-SQL
° Interpreting database manuals
° Tuning database parameters
o Aiding DBAs

o

LLM Limitations

LLM inference is unlikely to suffice for Cross-modal embeddings may enhance LLMs’
complex tasks, necessitating robust pipelines ability to process relational data, textual data,
that integrate verification steps and human time series, nested tables, ...
oversight to ensure accuracy and reliability > Qian, S., Zhou, Z., Xue, D., Wang, B., & Xu, C.

. . (2024). From linguistic giants to sensory
LLMs must learn to interact with database maestros: A survey on cross-modal reasoning
APIs, adapting to different system interfaces with large language models. arXiv preprint
through prompting or in-context learning arXiv:2409.18996

(examples in prompt)
Conversational interfaces and query

LLM effectiveness in handling relational and debuggers will be crucial to helping users
other structured data remains an open validate and trust LLM-generated queries
guestion

o state-of-the-art models struggle with
fundamental relational properties, such as the
set-based nature of relations

Data Systems for LLMs

Building data systems that support LLMs Creating evaluation frameworks for LLM applications
o efficient infrastructures to manage large multi-modal data o Effective tools to reliably post-process output data, debug
sets failures, and adapt inputs to LLM application workflows by

leveraging both human feedback and emerging

o optimize fine-tunin . .
P & reinforcement learning methods at scale

o ensure scalability, fault tolerance, and elasticity in native

cloud environments of both training and serving systems Supporting complex prompt engineering workflows
° accommodate new storage and access methods including > involves metadata management and strategic data
text, code, images, video, and audio chunking

Data quality, labeling, and metadata management for * LangChain, Llamalndex tools

LLM training , Novel indexing and retrieval methods for multi-modal
° large-scale datasets contain both valuable content and data in RAG systems
low-quality or biased data
o effective tools are needed to filter, de-bias, and curate Complex “agentic” Al workflows
such data efficiently .,

integrate multiple LLM inferences, retrieval steps, ML
models, and external tools such as code executors or
search engines

° improve functionality, robustness, and efficiency
° introduce new trade-offs in latency and accuracy

Responsible Data Management

RDM = integrating data management research
into the area of responsible Al (RAI)
o Stoyanovich, J., Abiteboul, S., Howe, B., Jagadish, H.
V., & Schelter, S. (2022). Responsible data
gn4ar;2gement. Communications of the ACM, 65(6),

Observation: decisions we make during data
collection and preparation profoundly impact the
accuracy, fairness, robustness, interpretability,
and legal compliance of Al systems

ReSﬁonsibIe data or Al system must consider
both the data and system life cycles—from data
provenance and validity to design goals,
deployment impacts, and unintended
consequences

Research directions

Metadata management tools for large-scale Al
models

Methods for federated data management,
privacy-preserving sharing, and interoperable
standards

Methods to assess data quality in relation to
specific downstream tasks and socially
meaningful metrics e.g., fairness, accuracy, and
robustness

Creating techniques to improve data quality
through acquisition, cleaning, and preprocessing

Establishing lifecycle-aware provenance tracking
to meet the diverse interpretability needs of data
scientists, auditors, ...

Data Sharing and Collaboration

Data sharing and collaboration are required Research questions

and enable cross-organizational analytics Enabl d di frel
- Challenges in terms of privacy, governance, and nable easy and accurate discovery ot relevant

query processing across distributed datasets in data and discard or avoid useless information
data lakes o with LLMs and RAG architectures, when too

much data is indexed, much of what is retrieved
is useless or irrelevant

Ensure that we are only collecting and
retaining data what is needed

Overcome a tension between accessibility and
privacy and questions about who has a right to
retain data

° large organizations are accumulating immense

volumes of data, giving them an advantage
when making predictions or training models

Data Integration

True integration requires addressing LLM ability to fully solve the complex problem
> semantic differences of data integration is still uncertain and
> resolving entity-matching issues requires further investigation
° ensuring data quality LLM and Al may help to address schema
° ensuring consistency across sources matching, entity resolution, and data cleaning
at scale

It is required to advance our understanding of
the semantic and structural aspects of data
integration

> we need to understand and mitigate potential
biases In Al-assisted integration processes

How would an LLM be able to tell if two tables
are related in a data lake with thousands of
tables, each with millions to billions of tuples?

> ways to expose just enough data to facilitate
integration are needed

Putrama, I. M., & Martinek, P. (2024).
Heterogeneous data integration: Challenges
and opportunities. Data in Brief, 56, 110853.

Human-Centered Systems

Building systems that augment human ability Leveraging LLMs for automated insight
to manage and analyze data while addressing discovery and visualization

the limitations of LLMs (hallucinations) > Designing intuitive, natural-language-driven
through mechanisms including interfaces and explanatory tools
o fact-checking o Emphasizing human-in-the loop feedback and

o database constraint maintenance continuous learning mechanisms

o user-verified results

Supporting users in spreadsheets, Bl
platforms, and computational notebooks
remains critical

> enhance environments using database concepts
such as indexing, declarative queries, and
automated optimization

Data Science and Data-Intensive Science

Increasing focus on end-to-end data pipeline and The idea of a single, universal language or
workflow systems paradigm (e.g., extending SQL) covering all data

> data preparation, analysis and visualization, ML/AI programming needs is unlikely, due to the
diversity and specialization of data science tasks

° pipelines are used both

° in Zn e;gplodratory mode, where they are iteratively developed Efforts should focus on developing interoperable
ana rerine .
systems that allow different tools and languages
to work together enhancing performance while
respecting domain-specific workflows

o for the deployment of live services

° increasingly sophisticated tools for

o workflow and data pipeline management

° data discovery A tension between improving existing widely

> data integration and cleaning used tools and advocating for cleaner or higher
° synthetic data generation performance abstractions that may have a

° metadata and log management Steeper adoption curve

° code and data versioning > making pandas more scalable remains important

° there’s potential in defining more streamlined,
learnable, and optimized dataframe abstractions
that unify ideas from Dask, Polars, Ibis, Spark

