
The Cambridge Report on
Database Research

October 19–20, 2023
A N A S TA S I A A I L A M A K I , S A M U E L M A D D E N , D A N I E L A B A D I , G U S TAV O A LO N S O, S I H E M A M E R - YA H I A ,
M A G D A L E N A B A L A Z I N S K A , P H I L I P A . B E R N S T E I N , P E T E R B O N C Z , M I C H A E L C A FA R E L L A , S U R A J I T
C H A U D H U R I , S U S A N D AV I D S O N , D AV I D D E W I T T, YA N L E I D I A O , X I N L U N A D O N G , M I C H A E L F R A N K L I N ,
J U L I A N A F R E I R E , J O H A N N E S G E H R K E , A LO N H A L E V Y, J O S E P H M . H E L L E R S T E I N , M A R K D . H I L L ,
S T R ATO S I D R E O S , YA N N I S I O A N N I D I S , C H R I S TO P H KO C H , D O N A L D KO S S M A N N , T I M K R A S K A , A R U N
K U M A R , G U O L I A N G L I , V O L K E R M A R K L , R E N É E M I L L E R , C . M O H A N , T H O M A S N E U M A N N , B E N G C H I N
O O I , FAT M A O Z C A N , A D I T YA PA R A M E S WA R A N , I P P O K R AT I S PA N D I S , J I G N E S H M . PAT E L , A N D R E W
PAV LO , D A N I C A P O R O B I C , V I K TO R S A N C A , M I C H A E L S TO N E B R A K E R , J U L I A S TOYA N O V I C H , D A N S U C I U,
WA N G - C H I E W TA N , S H I V V E N K ATA R A M A N , M AT E I Z A H A R I A , S TA N L E Y B . Z D O N I K

H T T P S : / /A R X I V. O R G /A B S / 2 5 0 4 . 1 1 2 5 9 V 1 1 5 A P R 2 0 2 5

https://arxiv.org/abs/2504.11259v1

Previous Reports
Seattle Report on Database Research. SIGMOD Rec. 48, 4 (Feb. 2020)

The Beckman report on database research. Commun. ACM 59, 2 (Jan. 2016)

The Claremont report on database research. SIGMOD Rec. 37, 3 (Sept. 2008)

The Lowell database research self-assessment. Commun. ACM 48, 5 (May 2005)

The Asilomar report on database research. SIGMOD Rec. 27, 4 (Dec. 1998)

Avi Silberschatz and Stan Zdonik. 1996. Strategic directions in database systems—breaking out of the
box. ACM Comput. Surv. 28, 4 (Dec. 1996)

Avi Silberschatz,Mike Stonebraker, and Jeff Ullman. 1996. Database research: achievements and
opportunities into the 21st century. SIGMOD Rec. 25, 1 (March 1996)

Avi Silberschatz, Michael Stonebraker, and Jeffrey D. Ullman. 1990. Database systems: achievements
and opportunities. SIGMOD Rec. 19, 4 (Dec. 1990)

Future Directions in DBMS Research - The Laguna Beach Participants. SIGMOD Rec. 18, 1 (1989)

2

Positioning of the report
is not intended as an exhaustive survey of all
technical challenges or industry innovations in
the field

reflects the perspectives of senior community
members on the most pressing challenges and
promising opportunities ahead

3

Evolution Over The Past Five Years
Important advances in the database and data
systems landscape for past five years

◦ new hardware

◦ cloud-based data systems

◦ continued adoption of statistical techniques, ML,
and AI in both core data systems architecture
and components

Rise of Large Language Models (LLMs)
◦ LLMs are still evolving and have yet to reach

their full potential

◦ offer a promising solution to many complex data
challenges involving natural language and
unstructured data

◦ unlocked new possibilities for understanding
human intentions and needs

◦ paving the way for more intuitive, natural
language-based querying and analysis interfaces

◦ comprehend data, including video and text, and
to ground structured data in broader general
knowledge

◦ synthesize complex, multi-step data
transformation programs

4

Outline
Core Data Systems

◦ Database Systems

◦ Cloud Data Systems

◦ New Hardware

◦ Learned Components, Autotuning, and
Opportunities for ML-in-databases

Generative AI / Large Language Models
◦ LLMs for Database Systems

◦ Data Systems for LLMs

Responsible Data Management and Data
Governance

Collaboration, Integration, and Human-Centric
Data Issues

◦ Data Sharing and Collaboration

◦ Data Integration

◦ Human-Centered Systems

◦ Data Science and Data-Intensive Science

5

Database Systems I
Open-source database engines with roots in
research continue to see increased adoption
and commercialization

◦ PostgreSQL continues to be a popular choice for
both on-premises and cloud deployments

◦ Apache Spark and Apache Flink as scalable data
processing systems

◦ DuckDB - an embeddable analytical database
engine
◦ efficient query processing in local environments

◦ increasingly popular in contexts where database engines
were previously absent, including data science workflows
and graphical user interfaces

Composable building blocks
◦ [Meta] Velox, Apache Arrow DataFusion, Apache

Calcite

◦ reusable, high-performance components for
data processing that can be easily integrated into
different systems

◦ standardizing interfaces for common database
operations and components

Bridging traditional data management and the
needs of data scientists

◦ Dask, Modin, Polars [https://pola.rs/], Spark

◦ DBMS-style semantics and optimization have
been brought to bear on data science workloads

6

DuckDB Applications
Mark Raasveldt and Hannes Mühleisen. 2019.
DuckDB: an Embeddable Analytical Database.
SIGMOD '19. ACM, New York, NY, USA.
https://doi.org/10.1145/3299869.3320212

Atwal, R.J., Boncz, P.A., Boyd, R., Courtney, A.,
Döhmen, T., Gerlinghoff, F., Huang, J., Hwang, J.,
Hyde, R., Felder, E. and Lacouture, J., 2024.
MotherDuck: DuckDB in the cloud and in the
client. In CIDR.

Analytical Workflows
◦ Lightweight Text Analytics Workflows with DuckDB

◦ https://duckdb.org/2025/06/13/text-analytics

◦ Machine Learning Prototyping with DuckDB and
scikit-learn
◦ https://duckdb.org/2025/05/16/scikit-learn-duckdb

◦ Data Science ETL Pipelines with DuckDB
◦ https://www.kdnuggets.com/data-science-etl-pipelines-with-

duckdb

GUIs
◦ MEET THE NEW DUCKDB LOCAL UI: ANALYZE DATA

VISUALLY, RIGHT WHERE IT LIVES
◦ https://motherduck.com/blog/local-duckdb-ui-visual-data-

analysis/

◦ Get a GUI for your Iceberg lakehouse with DuckDB
UI from Motherduck
◦ https://tower.dev/blog/get-a-gui-for-your-iceberg-lakehouse-

with-duckdb-ui-from-motherduck

7

https://doi.org/10.1145/3299869.3320212
https://motherduck.com/blog/local-duckdb-ui-visual-data-analysis/
https://motherduck.com/blog/local-duckdb-ui-visual-data-analysis/

References
Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong, Laith Sakka, Krishna Pai, Wei He,
and Biswapesh Chattopadhyay. 2022. Velox: meta's unified execution engine. Proc. VLDB Endow.
15, 12 (August 2022), 3372–3384. https://doi.org/10.14778/3554821.3554829

Andrew Lamb, Yijie Shen, Daniël Heres, Jayjeet Chakraborty, Mehmet Ozan Kabak, Liang-Chi
Hsieh, and Chao Sun. 2024. Apache Arrow DataFusion: A Fast, Embeddable, Modular Analytic
Query Engine. In Companion of the 2024 International Conference on Management of Data
(SIGMOD '24). Association for Computing Machinery, New York, NY, USA, 5–17.
https://doi.org/10.1145/3626246.3653368

Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and Daniel Lemire. 2018.
Apache Calcite: A Foundational Framework for Optimized Query Processing Over Heterogeneous
Data Sources. In Proceedings of the 2018 International Conference on Management of Data
(SIGMOD '18). Association for Computing Machinery, New York, NY, USA, 221–230.
https://doi.org/10.1145/3183713.3190662

8

https://doi.org/10.14778/3554821.3554829
https://doi.org/10.1145/3626246.3653368

References
Amandeep Khurana and Julien Le Dem. 2018. The Modern Data Architecture: The Deconstructed
Database. login Usenix Mag. 43, 4 (2018). https://www.usenix.org/publications/login/winter-
2018-vol-43-no-4/khurana

Pedro Pedreira, Orri Erling, Konstantinos Karanasos, Scott Schneider, Wes McKinney,
Satyanarayana R. Valluri, Mohamed Zaït, and Jacques Nadeau. 2023. The Composable Data
Management System Manifesto. Proc. VLDB Endow. 16, 10 (2023), 2679–2685.
https://doi.org/10.14778/3603581.3603604

9

https://www.usenix.org/publications/login/winter-2018-vol-43-no-4/khurana

DataFusion: Modular Analytic Query Engine
Embeddable and extensible query engine
written in Rust that

◦ uses Apache Arrow as its memory model (cache-
efficient columnar layouts)

Extension points
◦ Scalar, Aggregate, and Window Functions
◦ Catalog
◦ Data Sources
◦ Execution Environment
◦ Query / Language Frontends
◦ Query Rewrites / Optimizer Passes
◦ Relational Operators

“DataFusion and DuckDB exhibit similar
scaling behavior, and thus we conclude
DataFusion’s modular design and pull based
scheduler do not preclude state of the art
multi-core performance”

10

Velox: Meta’s Unified Execution Engine
The available data types, functions, and aggregates
vary across these systems, and their behavior can be
vastly inconsistent across engines

◦ 12 different implementations of the 𝑠𝑢𝑏𝑠𝑡𝑟 with different
parameter semantics (0- vs. 1-based indices), null
handling, and exception behavior

Velox: an open source C++ database acceleration
library

◦ Provides reusable, extensible, high-performance, and
dialect-agnostic data processing components for building
execution engines, and enhancing data management
systems

◦ Does not provide a language frontend; instead, expects a
fully optimized query plan as input and executes it locally
using the resources available in the local host

◦ Does not provide a global query optimizer, but at
execution time leverages adaptivity techniques, such as
filter and conjunct reordering, dynamic filter pushdown,
and adaptive column prefetching

Use cases: Presto, Spark, XStream, Scribe, FBETL,
TorchArrow, F3,

Highlevel components
◦ Type: a generic type system including scalar, complex,

structs, maps, arrays, tensors, …
◦ Vector: an Arrow-compatible2 columnar memory layout

module, supporting multiple encodings
◦ Expression Eval: a fully vectorized expression evaluation

engine
◦ Functions: APIs to build custom functions; simple (row-by-

row) and vectorized (batch-by-batch) interface for scalar
functions; for aggregate functions

◦ Operators: implementation of common data processing
operators - TableScan, Project, Filter, Aggregation,
Exchange/Merge, OrderBy, HashJoin, MergeJoin, Unnest

◦ I/O: a generic connector interface pluggable file format
encoders/decoders and storage adapters
◦ ORC, Parquet, S3, HDFS

◦ Serializers: a serialization interface targeting network
communication

◦ Resource Management: a collection of primitives for
handling computational resources, such as memory arenas
and buffer management, tasks, drivers, and thread pools
for CPU and thread execution, spilling, and caching

11

References
Dugré, M., Hayot‐Sasson, V., & Glatard, T. (2023). Performance comparison of Dask and Apache
Spark on HPC systems for neuroimaging. Concurrency and Computation: Practice and
Experience, 35(21), e7635.

Devin Petersohn, Dixin Tang, Rehan Durrani, Areg Melik-Adamyan, Joseph E. Gonzalez, Anthony
D. Joseph, and Aditya G. Parameswaran. Flexible Rule-Based Decomposition and Metadata
Independence in Modin: A Parallel Dataframe System. PVLDB, 15(3): 739-751, 2022.

12

Modin: A Parallel Dataframe System
Dataframe systems (ex. pandas) are used by
data scientists for data transformation,
validation, cleaning, and exploration

Dataframe systems like are non-interactive on
moderate-to-large datasets, and break down
completely when operating on datasets
beyond main memory

MODIN: ensuring scalability of dataframe
operators, while also providing clear,
consistent, and correct semantics to users

Formal basis: decomposition rules that allow
us to

◦ rewrite operations on the original dataframe
into analogous operations on vertical, horizontal,
or block-based partitions of the dataframe

◦ while being able to concatenate the outputs to
reproduce the results on the original operations

Metadata independence
◦ metadata is captured at a logical level, with the

physical representation of the metadata being
decoupled from the logical

◦ Independent type system for dataframes that
natively supports mixed and unspecified types in
a column, whereby we can defer type inference
to only when it is needed

13

Database Systems II
Federation

Pulling data from diverse sources to answer
complex queries

New challenges around automated
infrastructure management and performance
optimization

◦ techniques to push down query predicates to
remote data sources can help to enhance
performance by reducing data movement

◦ write propagation and data integration in such
environments will be essential to ensure
consistency and reliability

◦ data residency laws require data not to leave
specific jurisdictions, such as the EU

Gu, Z., Corcoglioniti, F., Lanti, D., Mosca, A.,
Xiao, G., Xiong, J., & Calvanese, D. (2024). A
systematic overview of data federation
systems. Semantic Web, 15(1), 107-165.

Pushdown analysis. IBM Db2 Big SQL 7.1.0
Documentation.
https://www.ibm.com/docs/en/db2-big-
sql/7.1.0?topic=processing-pushdown-analysis

Introduction to federated queries. Google
BigQuery Documentation.
https://docs.cloud.google.com/bigquery/docs/
federated-queries-intro

14

https://www.ibm.com/docs/en/db2-big-sql/7.1.0?topic=processing-pushdown-analysis
https://docs.cloud.google.com/bigquery/docs/federated-queries-intro

Cloud Data Systems
Cloud-native architectures have matured significantly

Traditional relational DBMSs, NoSQL, distributed SQL
offerings

The industry has widely adopted the concept of
disaggregated storage and compute, enabling a high
degree of scalability and flexibility

Significant trend: shared storage, where any
processing node can access any data element with a
soft allocation of nodes to data partitions

◦ independent scaling of compute and storage

◦ separation of concerns between the data processing and
durable storage layers

Amazon Redshift, Google BigQuery, Databricks, Microsoft
Fabric, Snowflake

Research directions

Database virtualization - a single database frontend
automatically provisions and routes queries to the best
infrastructure

Declarative infrastructure as a service
◦ interfaces are used for specifying more than queries but

also the infrastructure upon which systems run

◦ search and optimization systems attempt to allocate
infrastructure in the most cost-effective way

Collecting high-quality data to benchmark cloud
systems and train machine learning models that will
power adaptive and learned features of systems

◦ anonymized or aggregated workloads from operational
environments

◦ synthetic benchmarks that accurately mirror real-world
use cases (LLM to be applied?)

15

New Hardware
Нardware continues to evolve rapidly to cater to
resource-hungry AI

Database community has made strides in leveraging
improved hardware capabilities

◦ NVMe SSD
◦ new storage engines that can fully utilize their high IOPS and low latency

◦ Persistent memory (e.g. Intel Optane DIMMs)
◦ novel index structures that provide crash consistency without the overhead

of traditional write-ahead logging

◦ CXL (Compute Express Link)
◦ memory expansion and sharing techniques across servers

◦ GPU
◦ massively parallel query processing, particularly for hash joins and sorting

◦ Tensor PU
◦ Data PU, Smart Network Interface Card (NIC)
◦ Specialized AI accelerators: FPGA, ASIC

◦ data decompression and filtering

16

Research Directions

developing abstractions to leverage
diverse accelerators

designing new data-centric accelerators

exploiting parallelism in GPUs for
database operations

processing near memory (e.g., in Smart-
NICs or DPUs) ?

References
Cheng Li, Hao Chen, Chaoyi Ruan, Xiaosong Ma, and Yinlong Xu. 2021. Leveraging NVMe SSDs for
Building a Fast, Cost-effective, LSM-tree-based KV Store. ACM Trans. Storage 17, 4, Article 27
(November 2021), 29 pages. https://doi.org/10.1145/3480963

Lavinsky, B., & Zhang, X. (2022, July). PM-Rtree: A highly-efficient crash-consistent R-tree for
persistent memory. In Proceedings of the 34th International Conference on Scientific and Statistical
Database Management (pp. 1-11).

Marcel Weisgut, Daniel Ritter, Pinar Tözün, Lawrence Benson, and Tilmann Rabl. 2025. CXL Memory
Performance for In-Memory Data Processing. Proc. VLDB Endow. 18, 9 (May 2025), 3119–3133.
https://doi.org/10.14778/3746405.3746432

Tobias Maltenberger, Ilin Tolovski, and Tilmann Rabl. 2025. Efficiently Joining Large Relations on
Multi-GPU Systems. Proc. VLDB Endow. 18, 11 (July 2025), 4653–4667.
https://doi.org/10.14778/3749646.3749720

Xuan Sun, Chun Jason Xue, Jinghuan Yu, Tei-Wei Kuo, and Xue Liu. 2021. Accelerating data filtering for
database using FPGA. J. Syst. Archit. 114, C (Mar 2021). https://doi.org/10.1016/j.sysarc.2020.101908

17

https://doi.org/10.1145/3480963
https://doi.org/10.14778/3746405.3746432
https://doi.org/10.14778/3749646.3749720

References
Hu, J., Bernstein, P. A., Li, J., & Zhang, Q. (2024). DPDPU: data processing with dpus. arXiv
preprint arXiv:2407.13658. CIDR 2025.

Tibbetts, N., Ibtisum, S., & Puri, S. (2025). A Survey on Heterogeneous Computing Using
SmartNICs and Emerging Data Processing Units. Future Generation Computer Systems, 108207.

18

SpanDB (2021)
LSM-tree-based KV store that adapts RocksDB to utilize
NVMe SSD

The bulk of data are hosted on on cheaper and larger
SSDs

Write-ahead logs (WAL) and top levels of the LSM-tree
are relocated to a much smaller and faster NVMe SSD

High-speed, parallel WAL writes

TopFS - a file system to enable live data migration
between fast and slow disks

Evaluation
◦ SpanDB simultaneously improves RocksDB's throughput by

up to 8.8x and reduces its latency by 9–58%

◦ Compared with KVell, a system designed for high-end
SSDs, SpanDB achieves 96–140% of its throughput, with a
2.3–21.6 lower latency, at a cheaper storage configuration

19

Persistent Merged R-tree
High-efficient insert, delete, and search
operations for high-dimensional datasets using
persistent memory

Partitioned data structure
◦ non-leaf nodes are stored in DRAM

◦ leaf nodes are stored in persistent memory

Interleaved mapping approach
◦ maps contiguous data blocks in persistent

memory to interleaved bits in bitmap groups in
different cache lines to reduce cache line
reflushes

Supports lock-free insertion using persistent
multi-word compare and swap operations to
eliminate locking overhead

Reduces the latency of insertion by up to
77.6% and 80% for the uniform and zipfian
datasets respectively compared to the state-
oftheart persistent R-trees while maintaining
crash consistency

Reduces the search time by 19.2% compared
to FBR-tree

Achieves better scalability for both insertion
and search up to 32 threads

20

CXL Memory Performance for
In-Memory Data Processing
Database operation performance with data
interleaved across multiple CXL memory devices

◦ Composable Memory Appliance (CMA) Blade
prototypes - FPGA-based memory expansion solution

CXL for Sequential Accesses: data structures that
are primarily read randomly (hash tables) or
frequently written should be placed in CPU
memory, while sequentially accessed data
(frequently scanned columns) can be placed in CXL
memory

Attaching multiple CXL memory expansion devices
to a CPU increases the overall memory bandwidth

CXL Memory Expansion devices can be cheaper
than using only CPU memory

21

Efficiently Joining Large
Relations on Multi-GPU
Systems
Few existing multi-GPU algorithms either

◦ fail to exploit the high-speed P2P interconnects
between the GPUs or

◦ to handle large out-of-core data atively

Heterogeneous multi-GPU sort-merge join for
large out-of-core data exceeding the combined
GPU memory capacity

◦ a multi-GPU-accelerated merge- or radix
partitioning-based sort phase

◦ a parallel CPU-based multiway merge phase

◦ a hybrid join phase that combines a CPU merge
path partition with a multi-GPU-accelerated join
strategy

22

Data Processing
with DPUs
Challenges in the cloud

Compute inefficiency
◦ CPU speed has been increasing rather slowly over

the past decade
◦ data systems frequently invoke compute-heavy

subroutines: compress and encrypt
◦ can data systems still rely on CPUs to sustain good

performance on these compute tasks?

I/O cost: high-bandwidth I/O is among the most
common tasks in database systems

◦ the number of CPU cycles increases linearly with
I/O throughput

Disaggregation overhead
◦ better flexibility in resource management at the

expense of additional network I/O for storage
accesses leading to higher access latency and even
more CPU consumption

Compute Engine offers efficient and versatile
computational power for data processing tasks
orchestrated across DPU, host CPUs, GPUs,
FPGAs, connected via PCIe

Network Engine handles network I/O utilizing
the advanced networking facilities built in DPUs
(high-speed interfaces, match-action offloading,
and user libraries)

Storage Engine improves storage path efficiency,
including requests from both local applications
and those from remote clients

23

Learned Components, Autotuning,
and ML-in-databases
Machine learning for DBMS internals

◦ Query optimization: cost models based on
learning over data and workloads for complex,
multi-join queries

◦ Cardinality estimation: deep neural networks
and statistical models capture high-dimensional
correlations in data distributions

◦ Reinforcement learning techniques are deployed
to dynamically adjust physical data organization
based on observed query workloads, with
predictive I/O techniques demonstrating the
potential to outperform traditional indexing
methods

◦ Cloud resource management: ML models for
serverless VM management have shown
significant reductions in cold start times and
resource costs

References

Bolin Ding, Rong Zhu, and Jingren Zhou. 2024.
Learned Query Optimizers. Found. Trends
databases 13, 4 (Sep 2024), 250–310.
https://doi.org/10.1561/1900000082

Yang, Z. (2022). Machine learning for query
optimization (Doctoral dissertation, University
of California, Berkeley).

Bodra, D., & Khairnar, S. (2025). Machine
learning-based cloud resource allocation
algorithms: a comprehensive comparative
review. Frontiers in Computer Science, 7,
1678976.

24

Generative AI / Large Language Models
Enabling more intuitive human interfaces for
complex database systems

◦ auto-generating queries

◦ optimizing queries for performance
◦ Song, M., & Zheng, M. (2024). A Survey of Query

Optimization in Large Language Models. arXiv preprint
arXiv:2412.17558.

◦ suggesting schema designs based on workload
patterns and business requirements

Unclear whether LLMs are the right solution
for many classic DBMS problems

◦ it seems unlikely that it will make sense to use
LLM to solve query optimization problems

◦ APIs between data systems components will
ever be replaced by “agents” interacting via
natural language

Handling the high cost of inference at scale
◦ efficient computational stacks by combining data

partitioning, caching, embedding indexes

◦ databases and provenance tools play a crucial
role in validating outputs to reduce
hallucinations

Moving beyond basic RAG methods by
developing smarter, context-aware retrieval
systems

25

LLMs for Database Systems
Text-to-SQL

◦ Spider Text-To-SQL Challenge [https://yale-
lily.github.io/spider], ChatGPT 4 – rank 1-7

Tasks beyond Text-to-SQL
◦ Interpreting database manuals

◦ Tuning database parameters

◦ Aiding DBAs

◦ …

System design tasks
◦ composing database engines

◦ designing data pipelines

26

LLM Limitations
LLM inference is unlikely to suffice for
complex tasks, necessitating robust pipelines
that integrate verification steps and human
oversight to ensure accuracy and reliability

LLMs must learn to interact with database
APIs, adapting to different system interfaces
through prompting or in-context learning
(examples in prompt)

LLM effectiveness in handling relational and
other structured data remains an open
question

◦ state-of-the-art models struggle with
fundamental relational properties, such as the
set-based nature of relations

Cross-modal embeddings may enhance LLMs’
ability to process relational data, textual data,
time series, nested tables, …

◦ Qian, S., Zhou, Z., Xue, D., Wang, B., & Xu, C.
(2024). From linguistic giants to sensory
maestros: A survey on cross-modal reasoning
with large language models. arXiv preprint
arXiv:2409.18996

Conversational interfaces and query
debuggers will be crucial to helping users
validate and trust LLM-generated queries

27

Data Systems for LLMs
Building data systems that support LLMs

◦ efficient infrastructures to manage large multi-modal data
sets

◦ optimize fine-tuning

◦ ensure scalability, fault tolerance, and elasticity in native
cloud environments of both training and serving systems

◦ accommodate new storage and access methods including
text, code, images, video, and audio

Data quality, labeling, and metadata management for
LLM training

◦ large-scale datasets contain both valuable content and
low-quality or biased data

◦ effective tools are needed to filter, de-bias, and curate
such data efficiently

Creating evaluation frameworks for LLM applications
◦ Effective tools to reliably post-process output data, debug

failures, and adapt inputs to LLM application workflows by
leveraging both human feedback and emerging
reinforcement learning methods at scale

Supporting complex prompt engineering workflows
◦ involves metadata management and strategic data

chunking

◦ LangChain, LlamaIndex tools

Novel indexing and retrieval methods for multi-modal
data in RAG systems

Complex “agentic” AI workflows
◦ integrate multiple LLM inferences, retrieval steps, ML

models, and external tools such as code executors or
search engines

◦ improve functionality, robustness, and efficiency

◦ introduce new trade-offs in latency and accuracy

28

Responsible Data Management
RDM = integrating data management research
into the area of responsible AI (RAI)

◦ Stoyanovich, J., Abiteboul, S., Howe, B., Jagadish, H.
V., & Schelter, S. (2022). Responsible data
management. Communications of the ACM, 65(6),
64-74.

Observation: decisions we make during data
collection and preparation profoundly impact the
accuracy, fairness, robustness, interpretability,
and legal compliance of AI systems

Responsible data or AI system must consider
both the data and system life cycles—from data
provenance and validity to design goals,
deployment impacts, and unintended
consequences

Research directions

Metadata management tools for large-scale AI
models

Methods for federated data management,
privacy-preserving sharing, and interoperable
standards

Methods to assess data quality in relation to
specific downstream tasks and socially
meaningful metrics e.g., fairness, accuracy, and
robustness

Creating techniques to improve data quality
through acquisition, cleaning, and preprocessing

Establishing lifecycle-aware provenance tracking
to meet the diverse interpretability needs of data
scientists, auditors, …

29

Data Sharing and Collaboration
Data sharing and collaboration are required
and enable cross-organizational analytics

◦ Challenges in terms of privacy, governance, and
query processing across distributed datasets in
data lakes

Research questions

Enable easy and accurate discovery of relevant
data and discard or avoid useless information

◦ with LLMs and RAG architectures, when too
much data is indexed, much of what is retrieved
is useless or irrelevant

Ensure that we are only collecting and
retaining data what is needed

Overcome a tension between accessibility and
privacy and questions about who has a right to
retain data

◦ large organizations are accumulating immense
volumes of data, giving them an advantage
when making predictions or training models

30

Data Integration
True integration requires addressing

◦ semantic differences

◦ resolving entity-matching issues

◦ ensuring data quality

◦ ensuring consistency across sources

It is required to advance our understanding of
the semantic and structural aspects of data
integration

Putrama, I. M., & Martinek, P. (2024).
Heterogeneous data integration: Challenges
and opportunities. Data in Brief, 56, 110853.

LLM ability to fully solve the complex problem
of data integration is still uncertain and
requires further investigation

LLM and AI may help to address schema
matching, entity resolution, and data cleaning
at scale

◦ we need to understand and mitigate potential
biases In AI-assisted integration processes

How would an LLM be able to tell if two tables
are related in a data lake with thousands of
tables, each with millions to billions of tuples?

◦ ways to expose just enough data to facilitate
integration are needed

31

Human-Centered Systems
Building systems that augment human ability
to manage and analyze data while addressing
the limitations of LLMs (hallucinations)
through mechanisms including

◦ fact-checking

◦ database constraint maintenance

◦ user-verified results

Supporting users in spreadsheets, BI
platforms, and computational notebooks
remains critical

◦ enhance environments using database concepts
such as indexing, declarative queries, and
automated optimization

Leveraging LLMs for automated insight
discovery and visualization

◦ Designing intuitive, natural-language-driven
interfaces and explanatory tools

◦ Emphasizing human-in-the loop feedback and
continuous learning mechanisms

32

Data Science and Data-Intensive Science
Increasing focus on end-to-end data pipeline and
workflow systems

◦ data preparation, analysis and visualization, ML/AI

◦ pipelines are used both
◦ in an exploratory mode, where they are iteratively developed

and refined

◦ for the deployment of live services

◦ increasingly sophisticated tools for
◦ workflow and data pipeline management

◦ data discovery

◦ data integration and cleaning

◦ synthetic data generation

◦ metadata and log management

◦ code and data versioning

The idea of a single, universal language or
paradigm (e.g., extending SQL) covering all data
programming needs is unlikely, due to the
diversity and specialization of data science tasks

Efforts should focus on developing interoperable
systems that allow different tools and languages
to work together enhancing performance while
respecting domain-specific workflows

A tension between improving existing widely
used tools and advocating for cleaner or higher
performance abstractions that may have a
steeper adoption curve

◦ making pandas more scalable remains important

◦ there’s potential in defining more streamlined,
learnable, and optimized dataframe abstractions
that unify ideas from Dask, Polars, Ibis, Spark

33

