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Positioning of the report
is not intended as an exhaustive survey of all 
technical challenges or industry innovations in 
the field

reflects the perspectives of senior community 
members on the most pressing challenges and 
promising opportunities ahead
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Evolution Over The Past Five Years
Important advances in the database and data 
systems landscape for past five years

◦ new hardware

◦ cloud-based data systems

◦ continued adoption of statistical techniques, ML, 
and AI in both core data systems architecture 
and components

Rise of Large Language Models (LLMs)
◦ LLMs are still evolving and have yet to reach 

their full potential

◦ offer a promising solution to many complex data 
challenges involving natural language and 
unstructured data

◦ unlocked new possibilities for understanding 
human intentions and needs

◦ paving the way for more intuitive, natural 
language-based querying and analysis interfaces

◦ comprehend data, including video and text, and 
to ground structured data in broader general 
knowledge

◦ synthesize complex, multi-step data 
transformation programs
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Outline
Core Data Systems

◦ Database Systems

◦ Cloud Data Systems

◦ New Hardware

◦ Learned Components, Autotuning, and 
Opportunities for ML-in-databases

Generative AI / Large Language Models
◦ LLMs for Database Systems

◦ Data Systems for LLMs

Responsible Data Management and Data 
Governance

Collaboration, Integration, and Human-Centric 
Data Issues

◦ Data Sharing and Collaboration

◦ Data Integration

◦ Human-Centered Systems

◦ Data Science and Data-Intensive Science
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Database Systems I
Open-source database engines with roots in 
research continue to see increased adoption 
and commercialization

◦ PostgreSQL continues to be a popular choice for 
both on-premises and cloud deployments

◦ Apache Spark and Apache Flink as scalable data 
processing systems

◦ DuckDB - an embeddable analytical database 
engine
◦ efficient query processing in local environments

◦ increasingly popular in contexts where database engines 
were previously absent, including data science workflows 
and graphical user interfaces

Composable building blocks
◦ [Meta] Velox, Apache Arrow DataFusion, Apache 

Calcite

◦ reusable, high-performance components for 
data processing that can be easily integrated into 
different systems

◦ standardizing interfaces for common database 
operations and components

Bridging traditional data management and the 
needs of data scientists

◦ Dask, Modin, Polars [https://pola.rs/], Spark

◦ DBMS-style semantics and optimization have 
been brought to bear on data science workloads

6



DuckDB Applications
Mark Raasveldt and Hannes Mühleisen. 2019. 
DuckDB: an Embeddable Analytical Database. 
SIGMOD '19. ACM, New York, NY, USA. 
https://doi.org/10.1145/3299869.3320212

Atwal, R.J., Boncz, P.A., Boyd, R., Courtney, A., 
Döhmen, T., Gerlinghoff, F., Huang, J., Hwang, J., 
Hyde, R., Felder, E. and Lacouture, J., 2024. 
MotherDuck: DuckDB in the cloud and in the 
client. In CIDR.

Analytical Workflows
◦ Lightweight Text Analytics Workflows with DuckDB

◦ https://duckdb.org/2025/06/13/text-analytics

◦ Machine Learning Prototyping with DuckDB and 
scikit-learn
◦ https://duckdb.org/2025/05/16/scikit-learn-duckdb

◦ Data Science ETL Pipelines with DuckDB
◦ https://www.kdnuggets.com/data-science-etl-pipelines-with-

duckdb

GUIs
◦ MEET THE NEW DUCKDB LOCAL UI: ANALYZE DATA 

VISUALLY, RIGHT WHERE IT LIVES 
◦ https://motherduck.com/blog/local-duckdb-ui-visual-data-

analysis/

◦ Get a GUI for your Iceberg lakehouse with DuckDB
UI from Motherduck
◦ https://tower.dev/blog/get-a-gui-for-your-iceberg-lakehouse-

with-duckdb-ui-from-motherduck
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DataFusion: Modular Analytic Query Engine
Embeddable and extensible query engine 
written in Rust that 

◦ uses Apache Arrow as its memory model (cache-
efficient columnar layouts)

Extension points
◦ Scalar, Aggregate, and Window Functions
◦ Catalog
◦ Data Sources
◦ Execution Environment
◦ Query / Language Frontends
◦ Query Rewrites / Optimizer Passes
◦ Relational Operators

“DataFusion and DuckDB exhibit similar 
scaling behavior, and thus we conclude 
DataFusion’s modular design and pull based 
scheduler do not preclude state of the art 
multi-core performance”
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Velox: Meta’s Unified Execution Engine
The available data types, functions, and aggregates 
vary across these systems, and their behavior can be 
vastly inconsistent across engines

◦ 12 different implementations of the 𝑠𝑢𝑏𝑠𝑡𝑟 with different 
parameter semantics (0- vs. 1-based indices), null 
handling, and exception behavior

Velox: an open source C++ database acceleration 
library

◦ Provides reusable, extensible, high-performance, and 
dialect-agnostic data processing components for building 
execution engines, and enhancing data management 
systems

◦ Does not provide a language frontend; instead, expects a 
fully optimized query plan as input and executes it locally 
using the resources available in the local host

◦ Does not provide a global query optimizer, but at 
execution time leverages adaptivity techniques, such as 
filter and conjunct reordering, dynamic filter pushdown, 
and adaptive column prefetching

Use cases: Presto, Spark, XStream, Scribe, FBETL, 
TorchArrow, F3, 

Highlevel components
◦ Type: a generic type system including scalar, complex, 

structs, maps, arrays, tensors, …
◦ Vector: an Arrow-compatible2 columnar memory layout 

module, supporting multiple encodings
◦ Expression Eval: a fully vectorized expression evaluation

engine
◦ Functions: APIs to build custom functions; simple (row-by-

row) and vectorized (batch-by-batch) interface for scalar 
functions; for aggregate functions

◦ Operators: implementation of common data processing 
operators - TableScan, Project, Filter, Aggregation, 
Exchange/Merge, OrderBy, HashJoin, MergeJoin, Unnest

◦ I/O: a generic connector interface pluggable file format 
encoders/decoders and storage adapters
◦ ORC, Parquet, S3, HDFS

◦ Serializers: a serialization interface targeting network 
communication

◦ Resource Management: a collection of primitives for 
handling computational resources, such as memory arenas 
and buffer management, tasks, drivers, and thread pools 
for CPU and thread execution, spilling, and caching
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Modin: A Parallel Dataframe System
Dataframe systems (ex. pandas) are used by 
data scientists for data transformation, 
validation, cleaning, and exploration

Dataframe systems like are non-interactive on 
moderate-to-large datasets, and break down 
completely when operating on datasets 
beyond main memory

MODIN: ensuring scalability of dataframe
operators, while also providing clear, 
consistent, and correct semantics to users

Formal basis: decomposition rules that allow 
us to 

◦ rewrite operations on the original dataframe
into analogous operations on vertical, horizontal, 
or block-based partitions of the dataframe

◦ while being able to concatenate the outputs to 
reproduce the results on the original operations

Metadata independence
◦ metadata is captured at a logical level, with the 

physical representation of the metadata being 
decoupled from the logical

◦ Independent type system for dataframes that 
natively supports mixed and unspecified types in 
a column, whereby we can defer type inference 
to only when it is needed
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Database Systems II
Federation

Pulling data from diverse sources to answer 
complex queries

New challenges around automated 
infrastructure management and performance 
optimization

◦ techniques to push down query predicates to 
remote data sources can help to enhance 
performance by reducing data movement

◦ write propagation and data integration in such 
environments will be essential to ensure 
consistency and reliability

◦ data residency laws require data not to leave 
specific jurisdictions, such as the EU

Gu, Z., Corcoglioniti, F., Lanti, D., Mosca, A., 
Xiao, G., Xiong, J., & Calvanese, D. (2024). A 
systematic overview of data federation 
systems. Semantic Web, 15(1), 107-165.

Pushdown analysis. IBM Db2 Big SQL 7.1.0 
Documentation. 
https://www.ibm.com/docs/en/db2-big-
sql/7.1.0?topic=processing-pushdown-analysis

Introduction to federated queries. Google 
BigQuery Documentation. 
https://docs.cloud.google.com/bigquery/docs/
federated-queries-intro
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Cloud Data Systems
Cloud-native architectures have matured significantly

Traditional relational DBMSs, NoSQL,  distributed SQL 
offerings

The industry has widely adopted the concept of 
disaggregated storage and compute, enabling a high 
degree of scalability and flexibility

Significant trend: shared storage, where any 
processing node can access any data element with a 
soft allocation of nodes to data partitions

◦ independent scaling of compute and storage

◦ separation of concerns between the data processing and 
durable storage layers

Amazon Redshift, Google BigQuery, Databricks, Microsoft 
Fabric, Snowflake

Research directions

Database virtualization - a single database frontend 
automatically provisions and routes queries to the best 
infrastructure

Declarative infrastructure as a service
◦ interfaces are used for specifying more than queries but 

also the infrastructure upon which systems run

◦ search and optimization systems attempt to allocate 
infrastructure in the most cost-effective way

Collecting high-quality data to benchmark cloud 
systems and train machine learning models that will 
power adaptive and learned features of systems

◦ anonymized or aggregated workloads from operational 
environments

◦ synthetic benchmarks that accurately mirror real-world 
use cases (LLM to be applied?)
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New Hardware
Нardware continues to evolve rapidly to cater to 
resource-hungry AI

Database community has made strides in leveraging 
improved hardware capabilities

◦ NVMe SSD
◦ new storage engines that can fully utilize their high IOPS and low latency

◦ Persistent memory (e.g. Intel Optane DIMMs)
◦ novel index structures that provide crash consistency without the overhead 

of traditional write-ahead logging

◦ CXL (Compute Express Link)
◦ memory expansion and sharing techniques across servers

◦ GPU
◦ massively parallel query processing, particularly for hash joins and sorting

◦ Tensor PU
◦ Data PU, Smart Network Interface Card (NIC)
◦ Specialized AI accelerators: FPGA, ASIC

◦ data decompression and filtering
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Research Directions

developing abstractions to leverage 
diverse accelerators

designing new data-centric accelerators

exploiting parallelism in GPUs for 
database operations

processing near memory (e.g., in Smart-
NICs or DPUs) ?
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SpanDB (2021) 
LSM-tree-based KV store that adapts RocksDB to utilize 
NVMe SSD

The bulk of data are hosted on on cheaper and larger 
SSDs

Write-ahead logs (WAL) and top levels of the LSM-tree 
are relocated to a much smaller and faster NVMe SSD

High-speed, parallel WAL writes

TopFS - a file system to enable live data migration 
between fast and slow disks

Evaluation 
◦ SpanDB simultaneously improves RocksDB's throughput by 

up to 8.8x and reduces its latency by 9–58%

◦ Compared with KVell, a system designed for high-end 
SSDs, SpanDB achieves 96–140% of its throughput, with a 
2.3–21.6  lower latency, at a cheaper storage configuration

19



Persistent Merged R-tree
High-efficient insert, delete, and search 
operations for high-dimensional datasets using 
persistent memory

Partitioned data structure 
◦ non-leaf nodes are stored in DRAM 

◦ leaf nodes are stored in persistent memory

Interleaved mapping approach
◦ maps contiguous data blocks in persistent 

memory to interleaved bits in bitmap groups in 
different cache lines to reduce cache line 
reflushes

Supports lock-free insertion using persistent 
multi-word compare and swap operations to 
eliminate locking overhead

Reduces the latency of insertion by up to 
77.6% and 80% for the uniform and zipfian
datasets respectively compared to the state-
oftheart persistent R-trees while maintaining 
crash consistency

Reduces the search time by 19.2% compared 
to FBR-tree

Achieves better scalability for both insertion 
and search up to 32 threads

20



CXL Memory Performance for 
In-Memory Data Processing
Database operation performance with data 
interleaved across multiple CXL memory devices

◦ Composable Memory Appliance (CMA) Blade 
prototypes - FPGA-based memory expansion solution

CXL for Sequential Accesses: data structures that 
are primarily read randomly (hash tables) or 
frequently written should be placed in CPU 
memory, while sequentially accessed data 
(frequently scanned columns) can be placed in CXL 
memory

Attaching multiple CXL memory expansion devices 
to a CPU increases the overall memory bandwidth

CXL Memory Expansion devices can be cheaper
than using only CPU memory
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Efficiently Joining Large 
Relations on Multi-GPU 
Systems
Few existing multi-GPU algorithms either

◦ fail to exploit the high-speed P2P interconnects 
between the GPUs or 

◦ to handle large out-of-core data atively

Heterogeneous multi-GPU sort-merge join for 
large out-of-core data exceeding the combined 
GPU memory capacity

◦ a multi-GPU-accelerated merge- or radix 
partitioning-based sort phase 

◦ a parallel CPU-based multiway merge phase

◦ a hybrid join phase that combines a CPU merge 
path partition with a multi-GPU-accelerated join 
strategy
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Data Processing 
with DPUs
Challenges in the cloud

Compute inefficiency
◦ CPU speed has been increasing rather slowly over 

the past decade
◦ data systems frequently invoke compute-heavy 

subroutines: compress and encrypt
◦ can data systems still rely on CPUs to sustain good 

performance on these compute tasks?

I/O cost: high-bandwidth I/O is among the most 
common tasks in database systems

◦ the number of CPU cycles increases linearly with 
I/O throughput

Disaggregation overhead
◦ better flexibility in resource management at the 

expense of additional network I/O for storage 
accesses leading to higher access latency and even 
more CPU consumption

Compute Engine offers efficient and versatile 
computational power for data processing tasks 
orchestrated across DPU, host CPUs, GPUs, 
FPGAs, connected via PCIe

Network Engine handles network I/O utilizing 
the advanced networking facilities built in DPUs 
(high-speed interfaces, match-action offloading, 
and user libraries)

Storage Engine improves storage path efficiency, 
including requests from both local applications 
and those from remote clients
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Learned Components, Autotuning, 
and ML-in-databases
Machine learning for DBMS internals

◦ Query optimization: cost models based on 
learning over data and workloads for complex, 
multi-join queries

◦ Cardinality estimation: deep neural networks 
and statistical models capture high-dimensional 
correlations in data distributions

◦ Reinforcement learning techniques are deployed 
to dynamically adjust physical data organization 
based on observed query workloads, with 
predictive I/O techniques demonstrating the 
potential to outperform traditional indexing 
methods

◦ Cloud resource management: ML models for 
serverless VM management have shown 
significant reductions in cold start times and 
resource costs
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Generative AI / Large Language Models
Enabling more intuitive human interfaces for 
complex database systems

◦ auto-generating queries

◦ optimizing queries for performance
◦ Song, M., & Zheng, M. (2024). A Survey of Query 

Optimization in Large Language Models. arXiv preprint 
arXiv:2412.17558.

◦ suggesting schema designs based on workload 
patterns and business requirements

Unclear whether LLMs are the right solution 
for many classic DBMS problems

◦ it seems unlikely that it will make sense to use 
LLM to solve query optimization problems

◦ APIs between data systems components will 
ever be replaced by “agents” interacting via 
natural language

Handling the high cost of inference at scale
◦ efficient computational stacks by combining data 

partitioning, caching, embedding indexes

◦ databases and provenance tools play a crucial 
role in validating outputs to reduce 
hallucinations

Moving beyond basic RAG methods by 
developing smarter, context-aware retrieval 
systems
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LLMs for Database Systems
Text-to-SQL

◦ Spider Text-To-SQL Challenge [https://yale-
lily.github.io/spider], ChatGPT 4 – rank 1-7

Tasks beyond Text-to-SQL
◦ Interpreting database manuals

◦ Tuning database parameters

◦ Aiding DBAs

◦ …

System design tasks
◦ composing database engines

◦ designing data pipelines
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LLM Limitations
LLM inference is unlikely to suffice for 
complex tasks, necessitating robust pipelines 
that integrate verification steps and human 
oversight to ensure accuracy and reliability

LLMs must learn to interact with database 
APIs, adapting to different system interfaces 
through prompting or in-context learning 
(examples in prompt)

LLM effectiveness in handling relational and 
other structured data remains an open 
question

◦ state-of-the-art models struggle with 
fundamental relational properties, such as the 
set-based nature of relations

Cross-modal embeddings may enhance LLMs’ 
ability to process relational data, textual data, 
time series, nested tables, …

◦ Qian, S., Zhou, Z., Xue, D., Wang, B., & Xu, C. 
(2024). From linguistic giants to sensory 
maestros: A survey on cross-modal reasoning 
with large language models. arXiv preprint 
arXiv:2409.18996

Conversational interfaces and query 
debuggers will be crucial to helping users 
validate and trust LLM-generated queries
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Data Systems for LLMs
Building data systems that support LLMs

◦ efficient infrastructures to manage large multi-modal data 
sets

◦ optimize fine-tuning

◦ ensure scalability, fault tolerance, and elasticity in native 
cloud environments of both training and serving systems

◦ accommodate new storage and access methods including 
text, code, images, video, and audio

Data quality, labeling, and metadata management for 
LLM training

◦ large-scale datasets contain both valuable content and 
low-quality or biased data

◦ effective tools are needed to filter, de-bias, and curate 
such data efficiently

Creating evaluation frameworks for LLM applications
◦ Effective tools to reliably post-process output data, debug 

failures, and adapt inputs to LLM application workflows by 
leveraging both human feedback and emerging 
reinforcement learning methods at scale

Supporting complex prompt engineering workflows 
◦ involves metadata management and strategic data 

chunking

◦ LangChain, LlamaIndex tools

Novel indexing and retrieval methods for multi-modal 
data in RAG systems

Complex “agentic” AI workflows
◦ integrate multiple LLM inferences, retrieval steps, ML 

models, and external tools such as code executors or 
search engines

◦ improve functionality, robustness, and efficiency

◦ introduce new trade-offs in latency and accuracy
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Responsible Data Management
RDM = integrating data management research 
into the area of responsible AI (RAI)

◦ Stoyanovich, J., Abiteboul, S., Howe, B., Jagadish, H. 
V., & Schelter, S. (2022). Responsible data 
management. Communications of the ACM, 65(6), 
64-74.

Observation: decisions we make during data 
collection and preparation profoundly impact the 
accuracy, fairness, robustness, interpretability, 
and legal compliance of AI systems

Responsible data or AI system must consider 
both the data and system life cycles—from data 
provenance and validity to design goals, 
deployment impacts, and unintended 
consequences

Research directions

Metadata management tools for large-scale AI 
models

Methods for federated data management, 
privacy-preserving sharing, and interoperable 
standards

Methods to assess data quality in relation to 
specific downstream tasks and socially 
meaningful metrics e.g., fairness, accuracy, and 
robustness

Creating techniques to improve data quality 
through acquisition, cleaning, and preprocessing

Establishing lifecycle-aware provenance tracking 
to meet the diverse interpretability needs of data 
scientists, auditors, …

29



Data Sharing and Collaboration
Data sharing and collaboration are required 
and enable cross-organizational analytics

◦ Challenges in terms of privacy, governance, and 
query processing across distributed datasets in 
data lakes

Research questions

Enable easy and accurate discovery of relevant 
data and discard or avoid useless information

◦ with LLMs and RAG architectures, when too 
much data is indexed, much of what is retrieved 
is useless or irrelevant

Ensure that we are only collecting and 
retaining data what is needed

Overcome a tension between accessibility and 
privacy and questions about who has a right to 
retain data

◦ large organizations are accumulating immense 
volumes of data, giving them an advantage 
when making predictions or training models
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Data Integration
True integration requires addressing 

◦ semantic differences

◦ resolving entity-matching issues

◦ ensuring data quality

◦ ensuring consistency across sources

It is required to advance our understanding of 
the semantic and structural aspects of data 
integration

Putrama, I. M., & Martinek, P. (2024). 
Heterogeneous data integration: Challenges 
and opportunities. Data in Brief, 56, 110853.

LLM ability to fully solve the complex problem 
of data integration is still uncertain and 
requires further investigation

LLM and AI may help to address schema 
matching, entity resolution, and data cleaning 
at scale

◦ we need to understand and mitigate potential 
biases In AI-assisted integration processes

How would an LLM be able to tell if two tables 
are related in a data lake with thousands of 
tables, each with millions to billions of tuples?

◦ ways to expose just enough data to facilitate 
integration are needed
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Human-Centered Systems
Building systems that augment human ability 
to manage and analyze data while addressing 
the limitations of LLMs (hallucinations) 
through mechanisms including 

◦ fact-checking

◦ database constraint maintenance

◦ user-verified results

Supporting users in spreadsheets, BI 
platforms, and computational notebooks 
remains critical

◦ enhance environments using database concepts 
such as indexing, declarative queries, and 
automated optimization

Leveraging LLMs for automated insight 
discovery and visualization

◦ Designing intuitive, natural-language-driven 
interfaces and explanatory tools

◦ Emphasizing human-in-the loop feedback and 
continuous learning mechanisms
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Data Science and Data-Intensive Science
Increasing focus on end-to-end data pipeline and 
workflow systems

◦ data preparation, analysis and visualization,  ML/AI

◦ pipelines are used both 
◦ in an exploratory mode, where they are iteratively developed 

and refined

◦ for the deployment of live services

◦ increasingly sophisticated tools for 
◦ workflow and data pipeline management

◦ data discovery

◦ data integration and cleaning

◦ synthetic data generation

◦ metadata and log management

◦ code and data versioning

The idea of a single, universal language or 
paradigm (e.g., extending SQL) covering all data 
programming needs is unlikely, due to the 
diversity and specialization of data science tasks

Efforts should focus on developing interoperable 
systems that allow different tools and languages 
to work together enhancing performance while 
respecting domain-specific workflows

A tension between improving existing widely 
used tools and advocating for cleaner or higher 
performance abstractions that may have a 
steeper adoption curve

◦ making pandas more scalable remains important

◦ there’s potential in defining more streamlined, 
learnable, and optimized dataframe abstractions 
that unify ideas from Dask, Polars, Ibis, Spark
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